Ein Quadrat und zwei Rechtecke sind die Zutaten für die Knobelei dieser Woche. Die einzige bekannte Länge (=4) ist die der langen Seite des großen Rechtecks, das in der Zeichnung oben rot gezeichnet ist.
Holger Dambeck
Das Kreuz mit dem Quadrat
Ein SPIEGEL-Buch: 100 schlaue Mathe-Rätsel (Aus der Welt der Mathematik, Band 5)
Verlag: KiWi-Taschenbuch
Seitenzahl: 256
Für 14,00 € kaufen
Preisabfragezeitpunkt 20.07.2025 14.29 Uhr Keine Gewähr
Produktbesprechungen erfolgen rein redaktionell und unabhängig. Über die sogenannten Affiliate-Links oben erhalten wir beim Kauf in der Regel eine Provision vom Händler. Mehr Informationen dazu hier
Das gelbe Quadrat und das kleinere, blaue Rechteck teilen sich eine Seite. Das rote Rechteck liegt schräg auf dem gelben Quadrat und dem blauen Rechteck, wobei seine Eckpunkte die linke untere Ecke des Quadrats und die rechte untere Ecke des blauen Rechtecks berühren – siehe Zeichnung oben.
Welche Fläche haben gelbes Quadrat und blaues Rechteck zusammen? Gesucht ist die Summe.
Die Fläche beträgt 16.
Das rote Rechteck und die beiden farbigen Flächen bilden mehrere rechtwinklige Dreiecke. Deren Seitenlängen bezeichnen wir mit a, b, c und h – siehe Skizze unten.
Die gesuchte Fläche beträgt:
A = a2 + ab

DER SPIEGEL
Wir kennen weder a und b noch c oder h, sondern allein die Seitenlänge 4. Mit dem Satz des Pythagoras kommen wir trotzdem schnell zur Lösung: Es gilt:
a2+ h2 = 42
b2 + h2 = c2
Daraus folgt, wenn wir beide Gleichungen nach h2 umstellen und gleichsetzen:
a2 – 42 = b2 – c2
Für das große rechtwinklige Dreieck gilt laut Pythagoras:
42 + c2 = (a+b)2
Wir setzen nun (a+b)2 – 42 in die gefettete Gleichung oben für c2 ein und erhalten:
a2 – 42 = b2 – (a+b)2 + 42
a2 – 42 = b2 – a2 – 2ab – b2 + 42
a2 + ab = 42 = 16
a2 + ab entspricht der gesuchten Flächensumme, diese beträgt deshalb 16.
Dambeck, Holger
Kommen drei Logiker in eine Bar...: Die schönsten Mathe-Rätsel (Aus der Welt der Mathematik, Band 3)
Verlag: KiWi-Taschenbuch
Seitenzahl: 240
Für 9,99 € kaufen
Preisabfragezeitpunkt 20.07.2025 14.29 Uhr Keine Gewähr
Produktbesprechungen erfolgen rein redaktionell und unabhängig. Über die sogenannten Affiliate-Links oben erhalten wir beim Kauf in der Regel eine Provision vom Händler. Mehr Informationen dazu hier